

1

Fundamentals of Generative Diffusion Models

Form DDPM to Score-based Models

Fancheng Li (李凡成)

School of Physics and Technology

Wuhan University

Wuhan, China

- O2 A Unified Perspective of Diffusion Models
- O3 Energy-based Models and Guidance
- 04 Stochastic Process and Diffusion Models

- O2 A Unified Perspective of Diffusion Models
- O3 Energy-based Models and Guidance
- •04 Stochastic Process and Diffusion Models

Bayes' Rule and Its Validity

Our purpose is to learn the posterior probability and likelihood

Cromwell's Rule

"I beseech you, in the bowels of Christ, think it possible that you may be mistaken."

I think the moon might be made of cheese

Bernstein-von Mises Theorem

For some case, when n is enough large:

 $||P(\theta|x_1,\ldots,x_n) - \mathcal{N}(\hat{\theta}_n,n^{-1}\mathcal{I}(\theta_0)^{-1})||_{\mathrm{TV}} \xrightarrow{P_{\theta_0}} = 0$

They are the starting point and the end point of Bayesian inference

Tweedie's Formula and Evidence Lower Bound

From x to estimate parameters by MSE

 $L = \mathbb{E}[(\hat{\theta}(x) - \theta)^2]$

from the assumption

$$p(x|\theta) = \mathcal{N}(\theta, \sigma^2)$$
$$p(x) = \int_{-\infty}^{\infty} p(x|\theta) p(\theta) d\theta$$

Tweedie's Estimator

$$\mathbb{E}[\theta|x] = x + \sigma^2 \frac{\mathrm{d}}{\mathrm{d}x} \log p(x)$$
$$\hat{\theta}^{TE} = x + \sigma^2 \frac{\mathrm{d}}{\mathrm{d}x} \log p(x)$$

 Variational Bayesian inference

 ELBO is a good Loss Function

 $\log p(\boldsymbol{x}) = \int q_{\phi}(\boldsymbol{z}|\boldsymbol{x}) \log p(\boldsymbol{x}) d\boldsymbol{z}$
 $= \mathbb{E}_{q_{\phi}(\boldsymbol{z}|\boldsymbol{x})} \left[\log \frac{p(\boldsymbol{x}, \boldsymbol{z})}{q_{\phi}(\boldsymbol{z}|\boldsymbol{x})} \right] - \mathbb{E}_{q_{\phi}(\boldsymbol{z}|\boldsymbol{x})} \left[\log \frac{p(\boldsymbol{z}|\boldsymbol{x})}{q_{\phi}(\boldsymbol{z}|\boldsymbol{x})} \right]$
 $= \mathbb{E}_{q_{\phi}(\boldsymbol{z}|\boldsymbol{x})} \left[\log \frac{p(\boldsymbol{x}, \boldsymbol{z})}{q_{\phi}(\boldsymbol{z}|\boldsymbol{x})} \right] + \mathcal{D}_{KL}(q_{\phi}(\boldsymbol{z}|\boldsymbol{x}) || p(\boldsymbol{z}|\boldsymbol{x}))$
 $= \mathbb{E}_{q_{\phi}(\boldsymbol{z}|\boldsymbol{x})} \left[\log \frac{p(\boldsymbol{x}, \boldsymbol{z})}{q_{\phi}(\boldsymbol{z}|\boldsymbol{x})} \right] + \mathcal{D}_{KL}(q_{\phi}(\boldsymbol{z}|\boldsymbol{x}) || p(\boldsymbol{z}|\boldsymbol{x}))$
 $= \mathbb{E}_{q_{\phi}(\boldsymbol{z}|\boldsymbol{x})} \left[\log p_{\theta}(\boldsymbol{x}|\boldsymbol{z}) \right] - \mathcal{D}_{KL}(q_{\phi}(\boldsymbol{z}|\boldsymbol{x}) || p(\boldsymbol{z}|\boldsymbol{x}))$

$\log p(x)$ is alike energy function in statistical physics and related to score-based or energy-based models

https://en.wikipedia.org/wiki/Bayesian_statistics

• 02 A Unified Perspective of Diffusion Models

- O3 Energy-based Models and Guidance
- •04 Stochastic Process and Diffusion Models

Framework of Diffusion Models

Forward Process Adds Noise to Images

$$egin{aligned} & m{x}_t = \sqrt{lpha_t} m{x}_{t-1} + \sqrt{1-lpha_t} m{\epsilon} \ & m{\epsilon} & \sim \mathcal{N}(m{x}_t; 0, m{I}) \end{aligned}$$

Perturbation from the original image by recursion

$$egin{aligned} & m{x}_t = \sqrt{ar{lpha}_t} m{x}_0 + \sqrt{1 - ar{lpha}_t} m{\epsilon} \ & m{\epsilon} & \sim \mathcal{N}(m{x}_t; \sqrt{ar{lpha}_t} m{x}_0, (1 - ar{lpha}_t)m{I} \end{aligned}$$

$$q(\mathbf{x}_{1:T}|\mathbf{x}_0) \coloneqq \prod_{t=1}^T q(\mathbf{x}_t|\mathbf{x}_{t-1})$$
$$q(\mathbf{x}_t|\mathbf{x}_{t-1}) \coloneqq \mathcal{N}(\mathbf{x}_t; \sqrt{1-\beta_t}\mathbf{x}_{t-1}, \beta_t \mathbf{I})$$

Converting from images to Gaussian noise

Reverse Process Denoises the Gaussian Noise

Generating new images from Gaussian noise by predicting the reverse samples in every time step

Evidence Lower Bound (ELBO)

The formula of ELBO

$$egin{aligned} \log p(oldsymbol{x}) &= \log \int rac{p(oldsymbol{x}_{0:T})q(oldsymbol{x}_{1:T}|oldsymbol{x}_{0})}{q(oldsymbol{x}_{1:T}|oldsymbol{x}_{0})} \mathrm{d}oldsymbol{x}_{1:T} \ &= \log \mathbb{E}_{q(oldsymbol{x}_{1:T}|oldsymbol{x}_{0})} \left[rac{p(oldsymbol{x}_{0:T})}{q(oldsymbol{x}_{1:T}|oldsymbol{x}_{0})}
ight] \ &\geq \mathbb{E}_{q(oldsymbol{x}_{1:T}|oldsymbol{x}_{0})} \left[\log rac{p(oldsymbol{x}_{0:T})}{q(oldsymbol{x}_{1:T}|oldsymbol{x}_{0})}
ight] \end{aligned}$$

The model is trained

by maximizing ELBO

So we need to further learn about ELBO ELBO can be written as three terms:

$$= \underbrace{\mathbb{E}_{q(\boldsymbol{x}_{1}|\boldsymbol{x}_{0})} \left[\log p_{\theta}(\boldsymbol{x}_{0}|\boldsymbol{x}_{1})\right]}_{\text{ Edam}} \\ - \underbrace{D_{KL}(q(\boldsymbol{x}_{T}|\boldsymbol{x}_{0}) \parallel p(\boldsymbol{x}_{T}))}_{\text{ Ewmann}} \\ - \underbrace{\sum_{t=2}^{T} \mathbb{E}_{q(\boldsymbol{x}_{t},\boldsymbol{x}_{t-1}|\boldsymbol{x}_{0})} \left[D_{KL}(q(\boldsymbol{x}_{t-1}|\boldsymbol{x}_{t},\boldsymbol{x}_{0}) \parallel p_{\theta}(\boldsymbol{x}_{t-1}|\boldsymbol{x}_{t}))\right]}_{\text{ Ewmann}} \\ = \underbrace{\sum_{t=2}^{T} \mathbb{E}_{q(\boldsymbol{x}_{t},\boldsymbol{x}_{t-1}|\boldsymbol{x}_{0})} \left[D_{KL}(q(\boldsymbol{x}_{t-1}|\boldsymbol{x}_{t},\boldsymbol{x}_{0}) \parallel p_{\theta}(\boldsymbol{x}_{t-1}|\boldsymbol{x}_{t}))\right]}_{\text{ Ewmann}}$$

The first two terms are determined by forward process.

So we only need to optimize the last term.

Several Equivalent Optimization Function

For KL divergence of Gaussian distribution

$$egin{aligned} &D_{KL}(\mathcal{N}(oldsymbol{x};oldsymbol{\mu_x},oldsymbol{\Sigma_y}) \|\mathcal{N}(oldsymbol{y};oldsymbol{\mu_y},oldsymbol{\Sigma_y})) \ &=&rac{1}{2}iggl[\lograc{|oldsymbol{\Sigma_y}|}{|oldsymbol{\Sigma_x}|}+tr(oldsymbol{\Sigma_y}^{-1}oldsymbol{\Sigma_x})+(oldsymbol{\mu_y}-oldsymbol{\mu_x})^{\mathrm{T}}oldsymbol{\Sigma_y}^{-1}(oldsymbol{\mu_y}-oldsymbol{\mu_x})-n \ &oldsymbol{\omega_x}\ &&\mbol{arg}\min_{oldsymbol{ heta}}D_{KL}(q(oldsymbol{x}_{t-1}|oldsymbol{x}_{t},oldsymbol{x}_{0})\parallel p_{oldsymbol{ heta}}(oldsymbol{x}_{t-1}|oldsymbol{x}_{t})) \ &oldsymbol{\omega_x}\ &&\mbol{arg}\min_{oldsymbol{ heta}}rac{1}{2\sigma_q^2(t)}iggl[\|oldsymbol{\mu}_{ heta}-oldsymbol{\mu}_{q}\|_2^2iggr] \end{aligned}$$

So we get the first **optimization function** we need to predict the **mean value** by neural networks Predict samples by neural networks

$$oldsymbol{\mu}_{oldsymbol{ heta}}(oldsymbol{x}_t,t) = rac{\sqrt{lpha_t}(1-ar lpha_{t-1})oldsymbol{x}_t + \sqrt{ar lpha_{t-1}}(1-lpha_t)oldsymbol{\hat x}_{oldsymbol{ heta}}(oldsymbol{x}_t,t)}{1-ar lpha_t} \ \|oldsymbol{a}_{q}(oldsymbol{x}_t,t) - oldsymbol{x}_{0})\|_2^2 igg|$$

Predict noise by neural networks

$$oldsymbol{\mu}_{ heta}(oldsymbol{x}_t,t) = rac{1}{\sqrt{lpha_t}}oldsymbol{x}_t - rac{1-lpha_t}{\sqrt{1-arlpha_t}}oldsymbol{\hat{\epsilon}}_{oldsymbol{ heta}}(oldsymbol{x}_t,t)
onumber \ \mathbf{x}_t,t)
onumber \ \mathbf{x}_t = rac{1}{\sqrt{lpha_t}}oldsymbol{x}_t + rac{1-lpha_t}{\sqrt{1-arlpha_t}}oldsymbol{\hat{\epsilon}}_{oldsymbol{ heta}}(oldsymbol{x}_t,t)
onumber \ \mathbf{x}_t,t)
onumber$$

Several Equivalent Optimization Function

Tweedie's Estimator

$$\mathbb{E}[\theta|x] = x + \sigma^2 \frac{\mathrm{d}}{\mathrm{d}x} \log p(x)$$

$$\mathbb{E}[\boldsymbol{\mu}_{\boldsymbol{x}_t}|\boldsymbol{x}_t] = \boldsymbol{x}_t + (1 - \bar{\alpha}_t)\nabla_{\boldsymbol{x}_t} \log p(\boldsymbol{x}_t)$$

$$\sqrt{\bar{\alpha}_t}\boldsymbol{x}_0 = \boldsymbol{x}_t + (1 - \bar{\alpha}_t)\nabla_{\boldsymbol{x}_t} \log p(\boldsymbol{x}_t)$$

$$\boldsymbol{x}_0 = \frac{\boldsymbol{x}_t + (1 - \bar{\alpha}_t)\nabla_{\boldsymbol{x}_t} \log p(\boldsymbol{x}_t)}{\sqrt{\bar{\alpha}_t}}$$

$$\boldsymbol{\mu}_{\boldsymbol{\theta}}(\boldsymbol{x}_t, t) = \frac{1}{\sqrt{\alpha_t}}\boldsymbol{x}_t + \frac{1 - \alpha_t}{\sqrt{\alpha_t}}s_{\boldsymbol{\theta}}(\boldsymbol{x}_t, t)$$

$$\arg\min_{\boldsymbol{\theta}} \frac{1}{2\sigma_q^2(t)} \frac{(1 - \alpha_t)^2}{\alpha_t} \Big[\|s_{\boldsymbol{\theta}}(\boldsymbol{x}_t, t) - \nabla \log p(\boldsymbol{x}_t)\|_2^2$$

Relation between noise and score function

$$abla_{oldsymbol{x}_t}\log p(oldsymbol{x}_t) = -rac{1}{\sqrt{1-ar{lpha}_t}}oldsymbol{\epsilon}_0$$

The score function measures how the data is move to maximize, it clear that the opposite direction is noisy and as can be seen from the above formula.

O2 A Unified Persperctive of Diffusion Models

O3 Energy-based Models and Guidance

•04 Stochastic Process and Diffusion Models

Energy-based Models

Why the last formula can lead to energy-based model

 $egin{aligned} p_{ heta}(oldsymbol{x}) &= rac{1}{z_{ heta}} e^{-f_{ heta}(oldsymbol{x})} \
abla_{oldsymbol{x}} \log p_{oldsymbol{ heta}}(oldsymbol{x}) &=
abla_{oldsymbol{x}} \log rac{1}{z_{oldsymbol{ heta}}} e^{-f_{oldsymbol{ heta}}(oldsymbol{x})} \
&=
abla_{oldsymbol{x}} \log rac{1}{z_{oldsymbol{ heta}}} +
abla_{oldsymbol{x}} \log e^{-f_{oldsymbol{ heta}}(oldsymbol{x})} \
&= abla_{oldsymbol{x}} \log rac{1}{z_{oldsymbol{ heta}}} +
abla_{oldsymbol{x}} \log e^{-f_{oldsymbol{ heta}}(oldsymbol{x})} \
&= abla_{oldsymbol{x}} f_{oldsymbol{ heta}}(oldsymbol{x}) \
&\approx s_{oldsymbol{ heta}}(oldsymbol{x}) \
&\equiv s_{oldsymbol{ heta}}(oldsymbol{ heta}) \
&\equiv s_{oldsymbol{ heta}}(oldsymbol{x}) \
&\equiv s_{oldsymbol{ heta}}(oldsymbol{x}) \
&\equiv s_{oldsymbol{ heta}}(oldsymbol{x}) \

&\equiv s_{oldsymbol{ heta}}(oldsymbol{x}) \

&\equiv s_{oldsymbol{ heta}}(oldsymbol{x}) \

&\equiv s_{oldsymbol{ heta}}(oldsymbol{x}) \

&\equiv s_{oldsymbol{ heta}}(oldsymbol{ heta}) \

&\equiv s_{oldsymbol{ heta}}(oldsymbol{ heta}) \

&\equiv s_{oldsymbol{ heta}}(oldsymbol{x}) \

&\equiv s_{oldsymbol{ heta}}(oldsymbol{x}) \

&\equiv s_{oldsymbol{ heta}}(oldsymbol{ heta}) \

&\equiv s_{oldsymbol{$

We can further see the relationship between the diffusion models and statistical physics.

Langevin dynamics

$$oldsymbol{x}_{i+1} = oldsymbol{x}_i + c
abla \log p(oldsymbol{x}_i) + \sqrt{2c}oldsymbol{\epsilon}_i$$

The score function represents a move on the manifold

Noise protection against **local optimality**

Guidance

Classifier Guidance

$$egin{aligned}
abla \log p(oldsymbol{x}_t|y) &=
abla \log \left(rac{p(oldsymbol{x}_t)p(y|oldsymbol{x}_t)}{p(y)}
ight) \ &=
abla \log p(oldsymbol{x}_t) +
abla \log p(y|oldsymbol{x}_t) -
abla \log p(y) \ &= \underbrace{
abla \log p(oldsymbol{x}_t)}_{ ext{T}\& ext{H} lpha eta} + \underbrace{
abla \log p(y|oldsymbol{x}_t)}_{ ext{H} rac{1}{2} ext{H} lpha eta} \end{aligned}$$

 $abla \log p(oldsymbol{x}_t|y) =
abla \log p(oldsymbol{x}_t) + \gamma
abla \log p(y|oldsymbol{x}_t)$

Classifer guidance need to train two different diffusion models

So training is **very expensive.**

Classifier-Free Guidance

$$abla \log p(y|oldsymbol{x}_t) =
abla \log p(oldsymbol{x}_t|y) -
abla \log p(oldsymbol{x}_t)$$

$$egin{aligned}
abla \log p(oldsymbol{x}_t|y) &=
abla \log p(oldsymbol{x}_t) + \gamma(
abla \log p(oldsymbol{x}_t|y) -
abla \log p(oldsymbol{x}_t)) \ &= \underbrace{\gamma
abla \log p(oldsymbol{x}_t|y)}_{\Re atheta
angle + \underbrace{(1 - \gamma)
abla \log p(oldsymbol{x}_t)}_{ atheta
angle + rac{(1 - \gamma)
abla \log p(oldsymbol{x}_t)}{ atheta
angle + rac{(1 - \gamma)
abla \log p(oldsymbol{x}_t)}{ atheta
angle + rac{(1 - \gamma)
abla \log p(oldsymbol{x}_t)}{ atheta
angle + rac{(1 - \gamma)
abla \log p(oldsymbol{x}_t)}{ atheta
angle + rac{(1 - \gamma)
abla \log p(oldsymbol{x}_t)}{ atheta
angle + rac{(1 - \gamma)
abla \boldsymbol{x}_t \boldsymbol{x}_t)}{ atheta
angle + rac{(1 - \gamma)
abla \boldsymbol{x}_t \boldsymbol{x}_t)}{ atheta
angle + rac{(1 - \gamma)
abla \boldsymbol{x}_t \boldsymbol{x}_t)}{ atheta
angle + rac{(1 - \gamma)
abla \boldsymbol{x}_t \boldsymbol{x}_t)}{ atheta
angle + rac{(1 - \gamma)
abla \boldsymbol{x}_t \boldsymbol{x}_t)}{ atheta
angle + rac{(1 - \gamma)
abla \boldsymbol{x}_t \boldsymbol{x}_t)}{ atheta
angle + rac{(1 - \gamma)
abla \boldsymbol{x}_t \boldsymbol{x}$$

Classifer-Free guidance can train the diffusion models with guidance with **more convenience.** We can get the output of diffusion models with **more requirements.**

- O2 A Unified Persperctive of Diffusion Models
- O3 Energy-based Models and Guidance

O4 Stochastic Process and Diffusion Models

Stochastic Differential Equations

From SDE to DDPM

It is easy to show that DDPM can be seen as a special case of SDE.

$$egin{aligned} oldsymbol{x}(t+\Delta t) &= \sqrt{1-eta(t+\Delta t)\Delta t}oldsymbol{x}(t) + \sqrt{eta(t+\Delta t)\Delta t}oldsymbol{arepsilon}(t) \ oldsymbol{x}(t+\Delta t) &pprox \left[1-rac{eta(t+\Delta t)\Delta t}{2}
ight]oldsymbol{x}(t) + \sqrt{eta(t+\Delta t)\Delta t}oldsymbol{arepsilon}(t) \ oldsymbol{d}oldsymbol{x}(t) &pprox -rac{eta(t)oldsymbol{x}(t)}{2}oldsymbol{d}t + \sqrt{eta(t)}\sqrt{oldsymbol{d}t}oldsymbol{arepsilon}(t) \ oldsymbol{d}oldsymbol{x} &= -rac{eta(t)oldsymbol{x}(t)}{2}oldsymbol{d}t + \sqrt{eta(t)}oldsymbol{d}oldsymbol{w} \end{aligned}$$

SDE provides a lot of convenience for design and give an understanding of diffusion model of stochastic thermodynamics

Group Report

Thanks for listening

Fancheng Li (李凡成)